Exact likelihood inference in group interaction network models

نویسنده

  • Grant Hillier
چکیده

The paper studies spatial autoregressive models with group interaction structure, focussing on estimation and inference for the spatial autoregressive parameter λ. The quasi-maximum likelihood estimator for λ usually cannot be written in closed form, but using an exact result obtained earlier by the authors for its distribution function, we are able to provide a complete analysis of the properties of the estimator, and exact inference that can be based on it, in models that are balanced. This is presented first for the so-called pure model, with no regression component, but is also extended to some special cases of the more general model. We then study the much more difficult case of unbalanced models, giving analogues of some, but by no means all, of the results obtained for the balanced case earlier. In both balanced and unbalanced models, results obtained for the pure model generalize immediately to the model with group-specific regression components.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accurate Inference for the Mean of the Poisson-Exponential Distribution

Although the random sum distribution has been well-studied in probability theory, inference for the mean of such distribution is very limited in the literature. In this paper, two approaches are proposed to obtain inference for the mean of the Poisson-Exponential distribution. Both proposed approaches require the log-likelihood function of the Poisson-Exponential distribution, but the exact for...

متن کامل

Exact Evaluation of Marginal Likelihood Integrals

Inference in Bayesian statistics involves the evaluation of marginal likelihood integrals. We present algebraic algorithms for computing such integrals exactly for discrete data of small sample size. The underlying statistical models are mixtures of independent distributions, or, in geometric language, secant varieties of Segre-Veronese varieties.

متن کامل

Bayesian Estimation of Latently-grouped Parameters in Undirected Graphical Models

In large-scale applications of undirected graphical models, such as social networks and biological networks, similar patterns occur frequently and give rise to similar parameters. In this situation, it is beneficial to group the parameters for more efficient learning. We show that even when the grouping is unknown, we can infer these parameter groups during learning via a Bayesian approach. We ...

متن کامل

Prediction of Thermal performance nanofluid Al2O3 by Artificial Neural Network and Adaptive Neuro-Fuzzy Inference Systemt

In recent years, the use of modeling methods that directly utilize empirical data is increasing due to the high accuracy in predicting the results of the process, rather than statistical methods. In this paper, the ability of Artificial Neural Network (ANN) and Adaptive Fuzzy-Neural Inference System (ANFIS) models in the prediction of the thermal performance of Al2O3 nanofluid that is measured ...

متن کامل

The use of wavelet - artificial neural network and adaptive neuro fuzzy inference system models to predict monthly precipitation

Precipitation forecasting due to its random nature in space and time always faced with many problems and this uncertainty reduces the validity of the forecasting model. Nowadays nonlinear networks as intelligent systems to predict such complex phenomena are widely used. One of the methods that have been considered in recent years in the fields of hydrology is use of wavelet transform as a moder...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016